Tracking individuals in surveillance video of a high-density crowd

نویسندگان

  • Ninghang Hu
  • Henri Bouma
  • Marcel Worring
چکیده

Video cameras are widely used for monitoring public areas, such as train stations, airports and shopping centers. When crowds are dense, automatically tracking individuals becomes a challenging task. We propose a new tracker which employs a particle filter tracking framework, where the state transition model is estimated by an optical-flow algorithm. In this way, the state transition model directly uses the motion dynamics across the scene, which is better than the traditional way of a pre-defined dynamic model. Our result shows that the proposed tracker performs better on different tracking challenges compared with the state-of-the-art trackers, while also improving on the quality of the result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New insights into crowd density analysis in video surveillance systems. (Nouvelles méthodes pour l'étude de la densité des foules en vidéo surveillance)

Along with the widespread growth of surveillance cameras, computer vision algorithms have played a fundamental role in analyzing the large amount of videos. However, most of the current approaches in automatic video surveillance assume that the observed scene is not crowded, and is composed of easily perceptible components. These approaches are hard to be extended to more challenging videos of ...

متن کامل

Towards crowd density-aware video surveillance applications

Crowd density analysis is a crucial component in visual surveillance mainly for security monitoring. This paper proposes a novel approach for crowd density measure, in which local information at pixel level substitutes a global crowd level or a number of people per-frame. The proposed approach consists of generating automatic crowd density maps using local features as an observation of a probab...

متن کامل

Keynote: Automatic Detection and Tracking of Pedestrians in Videos with Various Crowd Densities

Manual analysis of pedestrians and crowds is often impractical for massive datasets of surveillance videos. Automatic tracking of humans is one of the essential abilities for computerized analysis of such videos. In this keynote paper, we present two state of the art methods for automatic pedestrian tracking in videos with low and high crowd density. For videos with low density, first we detect...

متن کامل

Automatic Detection and Tracking of Pedestrians in Videos with Various Crowd Densities

Manual analysis of pedestrians and crowds is often impractical for massive datasets of surveillance videos. Automatic tracking of humans is one of the essential abilities for computerized analysis of such videos. In this keynote paper, we present two state of the art methods for automatic pedestrian tracking in videos with low and high crowd density. For videos with low density, first we detect...

متن کامل

Crowd Behavior Recognition for Video Surveillance

Crowd behavior recognition is becoming an important research topic in video surveillance for public places. In this paper, we first discuss the crowd feature selection and extraction and propose a multiple-frame feature point detection and tracking based on the KLT tracker. We state that behavior modelling of crowd is usually coarse compared to that for individuals. Instead of developing genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012